Role of pfmdr1 amplification and expression in induction of resistance to artemisinin derivatives in Plasmodium falciparum.
نویسندگان
چکیده
Artemisinin and its derivatives are the most rapidly acting and efficacious antimalarial drugs currently available. Although resistance to these drugs has not been documented, there is growing concern about the potential for resistance to develop. In this paper we report the selection of parasite resistance to artelinic acid (AL) and artemisinin (QHS) in vitro and the molecular changes that occurred during the selection. Exposure of three Plasmodium falciparum lines (W2, D6, and TM91C235) to AL resulted in decreases in parasite susceptibilities to AL and QHS, as well as to mefloquine, quinine, halofantrine, and lumefantrine. The changes in parasite susceptibility were accompanied by increases in the copy number, mRNA expression, and protein expression of the pfmdr1 gene in the resistant progenies of W2 and TM91C235 parasites but not in those of D6 parasites. No changes were detected in the coding sequences of the pfmdr1, pfcrt, pfatp6, pftctp, and pfubcth genes or in the expression levels of pfatp6 and pftctp. Our data demonstrate that P. falciparum lines have the capacity to develop resistance to artemisinin derivatives in vitro and that this resistance is achieved by multiple mechanisms, to include amplification and increased expression of pfmdr1, a mechanism that also confers resistance to mefloquine. This observation is of practical importance, because artemisinin drugs are often used in combination with mefloquine for the treatment of malaria.
منابع مشابه
The Molecular Basis of Plasmodium Falciparum Resistance to the Antimalarial Lumefantrine
Malaria control is compromised by the development and spread of Plasmodium falciparum resistance to antimalarial drugs, which has caused an increase in malaria related morbidity and mortality. Artemisinin based combination therapy (ACT) has been implemented in almost all malaria endemic areas in an attempt to suppress drug resistance. The ACT artemether-lumefantrine (Coartem®; Novartis) is one ...
متن کاملDeamplification of pfmdr1-containing amplicon on chromosome 5 in Plasmodium falciparum is associated with reduced resistance to artelinic acid in vitro.
Amplification of the Plasmodium falciparum multidrug resistance 1 gene (pfmdr1) has been implicated in multidrug resistance, including in vitro resistance to artelinic acid (AL). The stability and fitness of having multiple copies of pfmdr1 are important factors due to their potential effects on the resistance phenotype of parasites. These factors were investigated by using an AL-resistant line...
متن کاملExploring the contribution of candidate genes to artemisinin resistance in Plasmodium falciparum.
The reduced in vivo sensitivity of Plasmodium falciparum has recently been confirmed in western Cambodia. Identifying molecular markers for artemisinin resistance is essential for monitoring the spread of the resistant phenotype and identifying the mechanisms of resistance. Four candidate genes, including the P. falciparum mdr1 (pfmdr1) gene, the P. falciparum ATPase6 (pfATPase6) gene, the 6-kb...
متن کاملpfmdr1 amplification is related to increased Plasmodium falciparum in vitro sensitivity to the bisquinoline piperaquine.
The 4-aminoquinoline bisquinoline piperaquine is an important partner drug in one of the presently recommended artemisinin combination therapies. Recent clinical trials have confirmed its high efficacy in combination with dihydroartemisinin. Resistance to piperaquine alone has, however, been documented. Amplification in copy number of the Plasmodium falciparum multidrug resistance locus on chro...
متن کاملEx vivo activity of endoperoxide antimalarials, including artemisone and arterolane, against multidrug-resistant Plasmodium falciparum isolates from Cambodia.
Novel synthetic endoperoxides are being evaluated as new components of artemisinin combination therapies (ACTs) to treat artemisinin-resistant Plasmodium falciparum malaria. We conducted blinded ex vivo activity testing of fully synthetic (OZ78 and OZ277) and semisynthetic (artemisone, artemiside, artesunate, and dihydroartemisinin) endoperoxides in the histidine-rich protein 2 enzyme-linked im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 54 6 شماره
صفحات -
تاریخ انتشار 2010